Premium
Generalized multivalued nonlinear quasivariational inclusions
Author(s) -
Liu Zeqing,
Kang Shin Min
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310044
Subject(s) - lipschitz continuity , mathematics , variational inequality , nonlinear system , convergence (economics) , monotone polygon , iterative method , algorithm , mathematical analysis , geometry , physics , quantum mechanics , economics , economic growth
Abstract In this paper, we introduce and study a few classes of generalized multivalued nonlinear quasivariational inclusions and generalized nonlinear quasivariational inequalities, which include many classes of variational inequalities, quasivariational inequalities and variational inclusions as special cases. Using the resolvent operator technique for maximal monotone mapping, we construct some new iterative algorithms for finding the approximate solutions of these classes of quasivariational inclusions and quasivariational inequalities. We establish the existence of solutions for this generalized nonlinear quasivariational inclusions involving both relaxed Lipschitz and strongly monotone and generalized pseudocontractive mappings and obtain the convergence of iterative sequences generated by the algorithms. Under certain conditions, we derive the existence of a unique solution for the generalized nonlinear quasivariational inequalities and obtain the convergence and stability results of the Noor type perturbed iterative algorithm. The results proved in this paper represent significant refinements and improvements of the previously known results in this area.