Premium
Lipschitz estimates for generalized commutators of fractional integrals with rough kernel
Author(s) -
Lu Shanzhen,
Zhang Pu
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310038
Subject(s) - mathematics , lipschitz continuity , commutator , remainder , omega , kernel (algebra) , order (exchange) , mathematical analysis , pure mathematics , function (biology) , algebra over a field , arithmetic , lie conformal algebra , physics , finance , quantum mechanics , economics , evolutionary biology , biology
Let $ T ^{A} _{\Omega, \alpha} $ (0 < α < n ) be the generalized commutator generated by fractional integral with rough kernel and the m –th order remainder of the Taylor formula of a function A. In this paper, the ( L p , L r ) ( r > 1) boundedness, the weak ( L 1 , L n /( n – α – β ) ) boundedness and the ( L p , Ḟ β , ∞ p ) boundedness of $ T ^{A} _{\Omega, \alpha} $ are discussed, when D γ A belongs to the Lipschitz function spaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom