Premium
Dimensions for random self–conformal sets
Author(s) -
Liu Yan–Yan,
Wu Jun
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310022
Subject(s) - mathematics , hausdorff dimension , conformal map , packing dimension , dimension (graph theory) , class (philosophy) , extremal length , minkowski–bouligand dimension , set (abstract data type) , dimension function , combinatorics , pure mathematics , conformal field theory , mathematical analysis , fractal dimension , fractal , artificial intelligence , computer science , programming language
A set is called regular if its Hausdorff dimension and upper box–counting dimension coincide. In this paper, we prove that the random self–conformal set is regular almost surely. Also we determine the dimensions for a class of random self–conformal sets.