Premium
Littlewood–Paley type inequality on ℝ
Author(s) -
Quek Tong Seng
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310010
Subject(s) - mathematics , disjoint sets , combinatorics , sequence (biology) , norm (philosophy) , lorentz transformation , lorentz space , constant (computer programming) , physics , genetics , classical mechanics , political science , law , biology , computer science , programming language
Let { I k } k ∈ℕ be a sequence of well–distributed mutually disjoint intervals of ℝ\{0}. For f ∈ L p (ℝ), 1 ≤ p ≤ 2, define S I kf by ( S I kf )ˆ = χ I k$\hat f $ . We prove that there exists a positive constant C such that\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document} $$ \big\Vert \big( \sum _{k \in \mathbb {N}} \big\vert S _{I_{k}}f \big\vert ^{p \prime} \big) ^{1/p \prime} \big\Vert _{p,p \prime} \le C \vert f \vert _{p} $$ \end{document}for all f ∈ L p (ℝ), 1 < p < 2, where 1/ p + 1/ p ′ = 1 and ‖ · ‖ p,p ′ is the norm of the Lorentz space L p,p ′ (ℝ). An application of our result to Fourier multipliers is given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom