Premium
Littlewood–Paley type inequality on ℝ
Author(s) -
Quek Tong Seng
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310010
Subject(s) - mathematics , disjoint sets , combinatorics , sequence (biology) , norm (philosophy) , lorentz transformation , lorentz space , constant (computer programming) , physics , genetics , classical mechanics , political science , law , biology , computer science , programming language
Let { I k } k ∈ℕ be a sequence of well–distributed mutually disjoint intervals of ℝ\{0}. For f ∈ L p (ℝ), 1 ≤ p ≤ 2, define S I kf by ( S I kf )ˆ = χ I k$\hat f $ . We prove that there exists a positive constant C such that\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document} $$ \big\Vert \big( \sum _{k \in \mathbb {N}} \big\vert S _{I_{k}}f \big\vert ^{p \prime} \big) ^{1/p \prime} \big\Vert _{p,p \prime} \le C \vert f \vert _{p} $$ \end{document}for all f ∈ L p (ℝ), 1 < p < 2, where 1/ p + 1/ p ′ = 1 and ‖ · ‖ p,p ′ is the norm of the Lorentz space L p,p ′ (ℝ). An application of our result to Fourier multipliers is given.