z-logo
Premium
A Spectrum Determined by Eigencurves
Author(s) -
Binding Paul,
Volkmer Hans
Publication year - 1999
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19992020102
Subject(s) - mathematics , eigenfunction , spectrum (functional analysis) , hilbert space , operator (biology) , parameterized complexity , sturm–liouville theory , representation (politics) , mathematical analysis , boundary (topology) , space (punctuation) , pure mathematics , boundary value problem , self adjoint operator , mathematical physics , combinatorics , eigenvalues and eigenvectors , physics , quantum mechanics , biochemistry , chemistry , linguistics , philosophy , repressor , politics , political science , transcription factor , law , gene
This paper investigates the self‐adjoint operator ‐ ∂ 2 /∂x 2 + q(x, y ) in the Hilbert space L 2 (( a, b )× ( c,d )) subject to the boundary conditions z ( a,y ) = z ( b,y ) = 0. It is shown that the spectrum and spectral representation of A are determined by the eigencurves and eigenfunctions of the parameterized regular Sturm‐Liouville operator ‐ d 2 / dx 2 + q(x,y ).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom