z-logo
Premium
Nonlinear eigenvalue problems for quasilinear equations in unbounded domains
Author(s) -
Drábek Pavel,
Simader Christian G.
Publication year - 1999
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.1999.3212030102
Subject(s) - mathematics , nonlinear system , eigenvalues and eigenvectors , mathematical analysis , pure mathematics , physics , quantum mechanics
We prove the existence of a solution of the nonlinear equation\documentclass{article}\pagestyle{empty}\begin{document}$$ ‐ {\rm div}\left({a\left(x \right)|\nabla _u |^{p ‐ 2} \nabla _u} \right) = \lambda f\left({x,u} \right) $$\end{document}in IR N and in exterior domains, respectively. We concentrate to the case when p ≥ N and the nonlinearity f(x, · ) is “superlinear” and “subcritical”.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom