Premium
Compact Null Hypersurfaces and Collapsing Riemannian Manifolds
Author(s) -
Rendall Alan D.
Publication year - 1998
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19981930110
Subject(s) - mathematics , hypersurface , ricci curvature , riemann curvature tensor
Restrictions are obtained on the topology of a compact divergence ‐ free null hypersurface in a four‐dimensional Lorentzian manifold whose Ricci tensor is zero or satisfies some weaker conditions. This is done by showing that each null hypersurface of this type can be used to construct a family of three ‐ dimensional Riemannian metrics which collapses with bounded curvature and applying known results on the topology of manifolds which collapse. The result is then applied to general relativity, where it implies a restriction on the topology of smooth compact Cauchy horizons in spacetimes with various types of reasonable matter content.