z-logo
Premium
On the Growth of Convergence Radii for the Eigenvalues of the Mathieu Equation
Author(s) -
Volkmer Hans
Publication year - 1998
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19981920114
Subject(s) - mathematics , mathieu function , eigenvalues and eigenvectors , mathematical analysis , convergence (economics) , pure mathematics , physics , quantum mechanics , economics , economic growth
It is proved that the convergence radii ρ n of the eigenvalues of the Mathieu equation satisfy lim inf ρ n / n 2 > kk′K 2 = 2.0418., where the modulus k of the complete elliptic integrals is determined by 2 E = K .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom