z-logo
Premium
On the Eigenvalue Accumulation of Sturm‐Liouville Problems Depending Nonlinearly on the Spectral Parameter
Author(s) -
Mennicken R.,
Schmi H.,
Shkalikov A. A.
Publication year - 1998
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19981890110
Subject(s) - sturm–liouville theory , eigenvalues and eigenvectors , mathematics , interval (graph theory) , boundary value problem , mathematical analysis , nonlinear system , magnetohydrodynamics , combinatorics , physics , plasma , quantum mechanics
A nonlinear spectral problem for a Sturm‐Liouville equation‐( p (x, λ)y'(x, λ))' + q ( x , λ) y ( x , λ) = 0 on a finite interval [ a , b ] with λ‐dependent boundary conditions is considered. The spectral parameter λ is varying in an interval ∧ and p ( x , λ), q ( x , A) are real, continuous functions on [ a , b ] × ∧ Some criteria to the eigenvalue accumulation at the endpoints of A will be established. The results are applied to concrete problems arising in magnetohydrodynamics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here