z-logo
Premium
A New Proof of the Existence of Homoclinic Orbits for a Class of Autonomous Second Order Hamiltonian Systems in IR. N
Author(s) -
Caldiroli Paolo
Publication year - 1997
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19971870103
Subject(s) - mathematics , homoclinic orbit , bounded function , hamiltonian system , degenerate energy levels , lemma (botany) , hamiltonian (control theory) , mountain pass , mountain pass theorem , order (exchange) , combinatorics , class (philosophy) , pure mathematics , mathematical analysis , discrete mathematics , physics , nonlinear system , quantum mechanics , bifurcation , ecology , mathematical optimization , poaceae , finance , artificial intelligence , computer science , economics , biology
We consider the Hamiltonian system in IR N given by\documentclass{article}\pagestyle{empty}\begin{document}$\ddot u + V'(u) = 0$\end{document}where V : IR N rarr; IR is a smooth potential having a non degenerate local maximum at 0 and we assume that there is an open bounded neighborhood ft of 0 such that V( x ) < V (0) for x δ Ω / {0}, V(x) = V (0) and V′(x) ≠ 0 for x ∈ ∂Ω. Using a refined version of the mountain pass lemma [4], we give a further proof of the existence of a solution of ü + V′(u) = 0, homoclinic to 0.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom