Premium
On Indefinite Moment Problems and Resolvent Matrices of Hermitian Operators in Kreîn Spaces
Author(s) -
Derkach Vladimir
Publication year - 1997
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19971840106
Subject(s) - mathematics , hermitian matrix , resolvent , moment problem , eigenvalues and eigenvectors , pure mathematics , matrix (chemical analysis) , moment (physics) , self adjoint operator , simple (philosophy) , mathematical analysis , hilbert space , algebra over a field , philosophy , statistics , physics , materials science , epistemology , classical mechanics , quantum mechanics , principle of maximum entropy , composite material
Let ( s j )∞ j =0 be a sequence of real numbers such that the Hankel matrices ( s i+j )∞ 0 , ( S i+j+i )∞ 0 have finite numbers of negative eigenvalues. The indefinite moment problem with the moments S j (j = 0,1,2, …) and the corresponding Stieltjes string are investigated. We use the approach via the Kreîn — Langer extension theory of symmetric operators in spaces with indefinite metric. In the framework of this approach a description of L– resolvents of a class of symmetric operators in Kreîn space and a simple formula for the calculation of the L– resolvent matrix in terms of boundary operators are given.