z-logo
Premium
On the Embedded Eigenvalues and Dense Point Spectrum of the Stark‐Like Hamiltonians
Author(s) -
Naboko Sergei N.,
Pushnitski Alexander B.
Publication year - 1997
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19971830112
Subject(s) - spectrum (functional analysis) , eigenvalues and eigenvectors , constructive , operator (biology) , mathematics , essential spectrum , sign (mathematics) , schrödinger's cat , point (geometry) , mathematical physics , section (typography) , stark effect , physics , mathematical analysis , quantum mechanics , spectral line , geometry , chemistry , biochemistry , process (computing) , repressor , computer science , transcription factor , advertising , business , gene , operating system
The point spectrum lying on the essential spectrum is investigated for the one‐dimensional Schrödinger operator \documentclass{article}\pagestyle{empty}\begin{document}$ \- \frac{{d^2 }}{{dx^2 }} + q(x) $\end{document} with decaying potential q , and weakly perturbed Stark‐like operator \documentclass{article}\pagestyle{empty}\begin{document}$ - \frac{{d^2 }}{{dx^2 }} - \left| x \right|^\alpha {\rm sign }x + q(x). $\end{document} An elementary constructive technique is developed to obtain various results concerning embedded eigenvalues of Schrödinger operators. In Section 3 a constructive example of the Stark ‐ like operator with the potential q decaying slightly slowlier than o(1/|x| 1‐α/2 )and dense point spectrum on the whole real axis is presented.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom