z-logo
Premium
Lipschitz — Orlicz Spaces and the Laplace Equation
Author(s) -
Aksoy A. G.,
Maligranda L.
Publication year - 1996
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19961780104
Subject(s) - mathematics , lipschitz continuity , smoothness , birnbaum–orlicz space , pure mathematics , laplace transform , mathematical analysis , function space , characterization (materials science) , function (biology) , interpolation space , functional analysis , materials science , gene , nanotechnology , evolutionary biology , biology , biochemistry , chemistry
Stein and Taibleson gave a characterization for f ϵ L p (ℝ n ) to be in the spaces Lip (α, L p ) and Zyg (α , L p ) in terms of their Poisson integrals. In this paper we extend their results to Lipschitz‐Orlicz spaces Lip (α , L m ) and Zygmund‐Orlicz spaces Zyg (φ , L m ) and to the general function φ ϵ P instead of the power function φ( t ) = t α . Such results describe the behavior of the Laplace equation in terms of the smoothness property of differences of f in Orlicz spaces L m (IR n ). More general spaces δ k (φ ,X, q ) are also considered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom