Premium
Fredholm Theory for a Class of Singular Integral Operators with Carleman Shift and Unbounded Coefficients
Author(s) -
Kravchenko V. G.,
Lebre A. B.,
Litvinchuk G. S.,
Teixeira F. S.
Publication year - 1995
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19951720115
Subject(s) - mathematics , unit circle , class (philosophy) , singular integral , mathematical analysis , fredholm determinant , singular integral operators , type (biology) , real line , pure mathematics , linear operators , operator theory , fredholm theory , integral equation , fredholm integral equation , biology , ecology , artificial intelligence , computer science , bounded function
A criterion for the Fredholmness of singular integral operators with Carleman shift in L P (Γ ) is obtained, where Γ is either the unit circle or the real line. The approach allows to consider unbounded coefficients in a class related to that of quasicontinuous functions. Applications to Wiener‐Hopf‐Hankel type operators and operators with linear fractional Carleman shift on IR are included.