z-logo
Premium
Tangential Convergence of Temperatures and Harmonic Functions in Besov and in Triebel‐Lizorkin Spaces
Author(s) -
Colzani Leonardo,
Laeng Enrico
Publication year - 1995
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19951720106
Subject(s) - mathematics , besov space , bounded function , space (punctuation) , operator (biology) , function space , harmonic function , extension (predicate logic) , function (biology) , mathematical analysis , combinatorics , distribution (mathematics) , convergence (economics) , pure mathematics , interpolation space , functional analysis , biochemistry , chemistry , linguistics , philosophy , repressor , evolutionary biology , biology , computer science , transcription factor , economics , gene , programming language , economic growth
We study the maximal function M f ( x ) = sup | f ( x + y, t)| when Ω is a region in the ( y,t ) Ω upper half space R   N+1 +and f(x, t ) is the harmonic extension to R + N+1 of a distribution in the Besov space B α p,q (R N ) or in the Triebel‐Lizorkin space F α p,q (R N ). In particular, we prove that when Ω= {| y | N/ ( N ‐αp) < t < 1} the operator M is bounded from F   α p,∞(R N ) into L p (R N ). The admissible regions for the spaces B   α p,q(R N ) with p < q are more complicated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom