Premium
Continuous Steiner‐Symmetrization
Author(s) -
Brock Friedemann
Publication year - 1995
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19951720104
Subject(s) - symmetrization , citation , combinatorics , mathematics , computer science , calculus (dental) , mathematical economics , library science , medicine , dentistry
where K is a convex subset of some functions space, e.g. W$j'(SZ) or Lp(sl), p > 1, and SZ c R" is a domain lying symmetrically to the hyperplane {y = 0}, {x = (x', y) , x' E R"-', y E R). If u E K , we often also have u* E K , where u* denotes the Steiner-symmetrization of u with respect to y , and J(u*) I J(u) . It can be proved for the absolute minimum u of (1) that u = u*. This argumentation fails for local minima or stationary points w of the functional J . Therefore the following question is natural: Is there a (in the norm of X ) continuous homotopy t H d , O I t < + 0 3 , u 0 = u , U r n = u * ,