Premium
Transcendency Results for Sums of Reciprocals of Linear Recurrences
Author(s) -
Becker PaulGeorg,
Töpper Thomas
Publication year - 1994
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19941680102
Subject(s) - mathematics , transcendental number , integer (computer science) , sequence (biology) , binary number , lucas sequence , combinatorics , rational number , transcendental equation , discrete mathematics , arithmetic , mathematical analysis , classical orthogonal polynomials , numerical analysis , biology , computer science , genetics , programming language , fibonacci polynomials , orthogonal polynomials
Suppose that { R n } n ≥0 is a linear recursive sequence and d ≥ 2 is an integer. Under suitable conditions on { R n } and d we show that\documentclass{article}\pagestyle{empty}\begin{document}$$ \sum\limits_{h = 0}^\infty {\frac{1}{{R_{d^h } }}} $$\end{document}and similarly constructed numbers are transcendental. Special attention is given to the case of binary recurrences.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom