z-logo
Premium
Non‐trivial Linear Systems on Smooth Plane Curves
Author(s) -
Coppens Marc,
Kato Takao
Publication year - 1994
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19941660106
Subject(s) - hospitality , library science , mathematics , computer science , history , archaeology , tourism
Let $C$ be a smooth plane curve of degree $d$ defined over an algebraicallyclosed field $k$. A base point free complete very special linear system $g^r_n$on $C$ is trivial if there exists an integer $m\ge 0$ and an effective divisor$E$ on $C$ of degree $md-n$ such that $g^r_n=|mg^2_d-E|$ and$r=(m^2+3m)/2-(md-n)$. In this paper, we prove the following: Theorem Let$g^r_n$ be a base point free very special non-trivial complete linear system on$C$. Write $r=(x+1)(x+2)/2-b$ with $x, b$ integers satisfying $x\ge 1, 0\le b\le x$. Then $n\ge n(r):=(d-3)(x+3)-b$. Moreover, this inequality is bestpossible.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom