Premium
On the Existence of Radial Solutions of a Nonlinear Elliptic BVP in an Annulus
Author(s) -
Cheng Yuanji
Publication year - 1994
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19941650106
Subject(s) - mathematics , annulus (botany) , nonlinear system , mathematical analysis , elliptic curve , boundary value problem , pure mathematics , physics , botany , quantum mechanics , biology
In this paper we study the radial solutions of quasilinear elliptic BVP:\documentclass{article}\pagestyle{empty}\begin{document}$ div (a(|x|,\,u,|\nabla u|)\nabla u) + f(|x|,\,u,\,|\nabla u|) = 0 $\end{document} on A , u satisfies the Robin boundary conditions (2) below, where A = { x ∈ R n ; a 1 < | x | < a 2 }, a 2 > a 1 > 0, constants. Under the very general conditions, we prove that if f is superlinear at u = ∞, then (*) admits infinitely many radial solutions, and that each of them has a different (finite) number of zeros.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom