Premium
Left K ‐Completeness in Quasi‐Metric Spaces
Author(s) -
Romaguera Salvador
Publication year - 1992
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19921570103
Subject(s) - mathematics , metric space , metrization theorem , completeness (order theory) , countable set , injective metric space , convex metric space , metric (unit) , pure mathematics , space (punctuation) , discrete mathematics , separable space , mathematical analysis , linguistics , operations management , philosophy , economics
Regular left K ‐sequentially complete quasi‐metric spaces are characterized. We deduce that these spaces are complete Aronszajn and that every metrizable space admitting a left K ‐sequentially complete quasi‐metric is completely metrizable. We also characterize quasi‐metric spaces having a quasi‐metric left K ‐sequential completion in terms of certain bases of countable order.