z-logo
Premium
On the Vector‐Valued Hilbert Transform
Author(s) -
Defant Martin
Publication year - 1989
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19891410123
Subject(s) - mathematics , bounded function , bounded operator , hilbert space , linear operators , operator (biology) , extension (predicate logic) , hilbert transform , linear map , operator space , combinatorics , discrete mathematics , pure mathematics , mathematical analysis , banach space , finite rank operator , computer science , chemistry , biochemistry , spectral density , statistics , repressor , transcription factor , gene , programming language
Let H : L p ( R ) → L p ( R ), 1 < p < ∞ be the real H ILBERT transform. A bounded, linear operator u : E → F ( E, F B ANACH spaces) is a HT‐operator , if the mapping u ⊗ H : E ⊗ L 2 ( R , E) → L 2 ( R , F ) has a bounded, linear extension to L 2 ( R ) → L 2 ( R , F ). For E = F and u = id E B OURGAIN [3] and B URKHOLDER [5] have shown that this holds if and only if E ϵ UMD. We study these HT ‐operators and, in particular, we construct a HT ‐operator which is not UMD ‐factorable. Furthermore, we show that a UMD ‐space E is a H ILBERT space if and only if | id E ⊗ H | = 1.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom