z-logo
Premium
Strong Approximations for Partial Sums of Random Variables Attracted to a Stable Law
Author(s) -
Christoph Gerd
Publication year - 1987
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19871340120
Subject(s) - mathematics , combinatorics , random variable , distribution (mathematics) , exponent , space (punctuation) , domain (mathematical analysis) , mathematical analysis , statistics , philosophy , linguistics
Let X i , i = 1, 2,…, be i.i.d. symmetric random variables in the domain of attraction of a symmetric stable distribution G α with 0 < α < 2. Let Y i , i = 1, 2, …, be i.i.d. symmetric stable random variables with the common distribution G α . It is known that under certain conditions the sequences { X i } and { Y i } can be reconstructed on a new probability space without changing the distribution of each such that \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{i = 1}^n {(X_i - Y_i) = o(n^{1/\gamma})} $\end{document} a.s. as n → ∞, where α ≦ γ < 2 (see Stout [10]). We will give a second approximation by partial sums of i.i.d. stable (with characteristic exponent α*, α < α* ≦ 2) random variables U i , i = 1, 2,…, n , and we will obtain strong upperbounds for the differences \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{i = 1}^n {(X_i - Y_i - U_i)} $\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here