Premium
Hardy Classes of Banach‐Space‐Valued Distributions
Author(s) -
Blasco Oscar,
GarcíaCuerva José
Publication year - 1987
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19871320105
Subject(s) - mathematics , banach space , trigonometric functions , pure mathematics , space (punctuation) , property (philosophy) , eberlein–šmulian theorem , mathematical analysis , lp space , geometry , epistemology , philosophy , linguistics
It is shown that for 0< p ≥ 1, the trigonometric polynomials are dense in H B p , the space of B ‐valued harmonic functions with non‐tangential maximal function in L p , if and only if the Banach space B has the Radon‐Nikodym property (R.N.P.). This extends known results for 1 < p < ∞. We also show that H B pcoincides with the corresponding atomic space if and only if B has the R.N.P.