z-logo
Premium
Hardy Classes of Banach‐Space‐Valued Distributions
Author(s) -
Blasco Oscar,
GarcíaCuerva José
Publication year - 1987
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19871320105
Subject(s) - mathematics , banach space , trigonometric functions , pure mathematics , space (punctuation) , property (philosophy) , eberlein–šmulian theorem , mathematical analysis , lp space , geometry , epistemology , philosophy , linguistics
It is shown that for 0< p ≥ 1, the trigonometric polynomials are dense in H   B p , the space of B ‐valued harmonic functions with non‐tangential maximal function in L p , if and only if the Banach space B has the Radon‐Nikodym property (R.N.P.). This extends known results for 1 < p < ∞. We also show that H   B pcoincides with the corresponding atomic space if and only if B has the R.N.P.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom