z-logo
Premium
Semi‐Classical Asymptotic of Spectral Function for Some Schrödinger Operators
Author(s) -
Karadzhov G. E.
Publication year - 1986
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19861280109
Subject(s) - mathematics , diagonal , schrödinger's cat , asymptotic expansion , function (biology) , asymptotic analysis , asymptotic formula , mathematical physics , energy (signal processing) , spectral properties , spectral function , mathematical analysis , pure mathematics , physics , geometry , statistics , computational chemistry , chemistry , evolutionary biology , biology , condensed matter physics
In this paper one obtains a result concerning the asymptotic behaviour of the spectral function on the diagonal for SCHRÖDINGER operators A h = – h 2 /2 λ + V as h → 0. This asymptotic change the form on the energy level V ( x ) = λ.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom