z-logo
Premium
A non‐commutative neutrix product of distributions
Author(s) -
Fisher Brian
Publication year - 1982
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.19821080110
Subject(s) - mathematics , citation , product (mathematics) , fisher information , calculus (dental) , library science , computer science , statistics , geometry , medicine , dentistry
Let f and g be distributions and let gn = (g ∗ δn)(x), where δn(x) is a certain sequence converging to the Dirac delta function. The non-commutative neutrix product f ◦g of f and g is defined to be the limit of the sequence {fgn}, provided its limit h exists in the sense that N−lim n→∞ 〈f(x)gn(x), φ(x)〉 = 〈h(x), φ(x)〉, for all functions φ in D . It is proved that (x+ ln p x+) ◦ (xμ+ ln x+) = x + ln x+, (x− ln x−) ◦ (xμ− ln x−) = x − ln x−, for λ + μ < −1; λ, μ, λ + μ = −1,−2, . . . and p, q = 0, 1, 2. . . . .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom