Premium
Fabrication of Cellulose Nanofiber/Reduced Graphene Oxide/Nitrile Rubber Flexible Films Using Pickering Emulsion Technology for Electromagnetic Interference Shielding and Piezoresistive Sensor
Author(s) -
Wang Yanan,
Guan Yupeng,
Liao Daogui,
He Yingying,
Li Shuai,
Zhou Li,
Yu Chuanbai,
Chen Yunhua,
Liu Yuanli,
Liu Hongxia
Publication year - 2021
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.202100070
Subject(s) - materials science , graphene , electromagnetic shielding , composite material , emi , composite number , fabrication , electrical conductor , electromagnetic interference , flexible electronics , piezoresistive effect , oxide , nanotechnology , electrical engineering , medicine , alternative medicine , engineering , pathology , metallurgy
With the rapid development of flexible electronics, the demand for flexible electromagnetic interference (EMI) shielding materials is increasing. This study develops a new green and effective strategy, consisting of graphene oxide (GO) and cellulose nanofibrils (CNF) co‐stabilized Pickering emulsion combined with hot‐pressing technology, to prepare flexible and conductive nitrile rubber (NBR) composite films. The composite films consist of a 3D network conductive skeleton structure of reduced GO (RGO) and an isolated NBR structure. This specific design results in a maximum high conductivity of 99 S m −1 , which is higher by an order of magnitude compared with that of the composites obtained using the traditional solution blending method, and a stable EMI shielding effectiveness of 25.81 dB in the X band. The introduction of the flexible NBR results in the excellent flexibility and structural strength of the composite film, and exhibits a decrease of 2.51% in the EMI shielding efficacy after 5000 cycles. As a piezoresistive sensor for wearable devices, the CNF‐RGO/NBR flexible film can hold precise current signals and respond to finger motion. The findings of this study can provide new insights for the design of conductive and flexible composites as wearable and portable medical equipment and electronic devices.