Premium
Functional Piezoresistive Polymer‐Composites Based on Polycarbonate and Polylactic Acid for Deformation Sensing Applications
Author(s) -
Dios Jose R.,
Gonzalo Beatriz,
Tubio Carmen R.,
Cardoso João,
Gonçalves Sérgio,
Miranda Daniel,
Correia Vitor,
Viana Júlio C.,
Costa Pedro,
LancerosMéndez Senentxu
Publication year - 2020
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.202000379
Subject(s) - materials science , composite material , percolation threshold , polylactic acid , polycarbonate , piezoresistive effect , deformation (meteorology) , bending , percolation (cognitive psychology) , nanocomposite , carbon nanotube , casting , polymer , electrical resistivity and conductivity , neuroscience , electrical engineering , biology , engineering
Multifunctional composites for deformation sensing applications have been developed by solvent casting based on polycarbonate (PC) and polylactic acid (PLA) reinforced with carbon nanotubes (CNT). Composites shows homogeneous filler dispersion and low percolation threshold at 0.1 and 0.06 wt% CNT content for PLA and PC, respectively. The maximum electrical conductivity obtained for the larger filler contents is two order of magnitude higher for PLA composites than for PC ones, showing that the matrix influences the electrical properties of the composites. With respect to the mechanical characteristics, the samples show a maximum strain near 40% and 2.75% for composites with 0.25 and 1 wt% CNT content for PC and PLA, respectively, decreasing for larger filler contents. Concerning the piezoresistive response, 4‐point‐bending experiments from 0.1 to 5 mm, lead to a Gauge Factor (GF) of ≈1 for PC, showing that the piezoresistive response if determined by the geometrical response. On the other hand, PLA composites show GF of ≈ 3, revealing also intrinsic contributions, due to the variation of the filler network upon material deformation. The resistance variation upon mechanical bending deformation shows linear response for the composites near the percolation threshold and above, for both composites. A proof‐of‐concept of the functional sensing response for applications is achieved by measuring the bending deformation of an endoscope, showing that the developed sensors can determine the bending orientation and intensity, as predicted by the simulation model applied to the endoscope.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom