Premium
Injection Molded Strong Polypropylene Composite Foam Reinforced with Rubber and Talc
Author(s) -
Zhao Jinchuan,
Zhao Qingliang,
Wang Guilong,
Wang Chongda,
Park Chul B.
Publication year - 2020
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201900630
Subject(s) - materials science , polypropylene , composite material , talc , composite number , toughness , ultimate tensile strength , natural rubber , molding (decorative) , silicone rubber
Lightweight plastic foams are of great significance for saving resources and reducing energy consumption. Foam injection molding (FIM) shows a promising future to provide lightweight and shape‐complex plastic components. However, it is still challenging to produce lightweight and strong polypropylene (PP) foams by FIM due to PP's poor foaming ability. Herein, rubber and talc are employed to improve PP's foaming ability, and hence to enhance PP foam's mechanical properties. Due to the significantly enhanced rheological properties, injection molded PP composite foam exhibits greatly refined and homogenized cellular structure compared with pure PP foam. Thanks to rubber toughening effect and improved cellular morphology, PP/rubber foam shows much higher ductility than pure PP foam. Moreover, talc particles lead to remarkably enhanced rigidity of PP/rubber foams. Thus, lightweight and strong PP/rubber/talc composite foam is achieved with tensile toughness increased by 82.58% and impact strength increased by 106.21%, and they show broad industrial application prospects.