Premium
Microstructure, Thermal and Mechanical Behavior of 3D Printed Acrylonitrile Styrene Acrylate
Author(s) -
Guessasma Sofiane,
Belhabib Sofiane,
Nouri Hedi
Publication year - 2019
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201800793
Subject(s) - materials science , acrylonitrile butadiene styrene , fused deposition modeling , composite material , differential scanning calorimetry , polymer , ultimate tensile strength , microstructure , 3d printing , physics , thermodynamics
Abstract Fused deposition modeling (FDM) is one of the most popular additive manufacturing techniques for polymers. Despite the numerous works on the printability of various types of polymers, there is a lack in understanding the role of the microstructure on the mechanical performance of printed parts. This work aims at addressing this particular point for the case of a polymer that did not receive much attention, namely acrylonitrile styrene acrylate or ASA. This study emphasizes on the effect of the printing temperature on thermal and mechanical performance of printed ASA using differential scanning calorimetry, infra‐red measurements, mechanical testing, X‐ray micro‐tomography, and finite element computation. The experimental results demonstrate a narrow window of printability of ASA based on the thermal response of this polymer during the laying down process. In addition, both experimental and numerical results show an evident loss in the performance that represents one third of the performance of the raw material. Despite this loss, the limited amount of generated porosity and the level of tensile strength of ASA make it a good choice as a feedstock material for FDM compared to other polymers such as acrylonitrile butadiene styrene.