z-logo
Premium
Process‐Driven Microstructure Control in Melt‐Extrusion‐Based 3D Printing for Tailorable Mechanical Properties in a Polycaprolactone Filament
Author(s) -
Liu Fengyuan,
Vyas Cian,
Poologasundarampillai Gowsihan,
Pape Ian,
Hinduja Srichand,
Mirihanage Wajira,
Bartolo Paulo J.
Publication year - 2018
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201800173
Subject(s) - materials science , polycaprolactone , ultimate tensile strength , composite material , extrusion , microstructure , protein filament , modulus , biomaterial , porosity , 3d printing , compressive strength , nanotechnology , polymer
3D printing techniques are utilized to produce biomaterial scaffolds with porous architectures that enable cell attachment, biological factors, and appropriate mechanical strength. As the basic building block of a scaffold, the individual filaments should have sufficient mechanical properties, comprising high compressive loading, and fracture resistance to mimic the natural tissue organisation. In this contribution, process–structure–property relationships in melt extruded polycaprolactone filaments are investigated by considering crystalline features, tensile properties, and an array of processing parameters. The tensile properties of the filaments are improved significantly with relatively higher screw rotational speed and relatively lower processing temperature resulting in considerable increase in Young's modulus. The favorable properties are attributed to the increased crystal volume fraction and anisotropy. Thus, this study provides initial pathways for the potential control of mechanical properties of bioscaffolds via engineering crystalline structural features in printed filaments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here