Premium
Fluid‐Induced Alignment of Carbon Nanofibers in Polymer Fibers
Author(s) -
Lu Mingchang,
Sharifi Farrokh,
Hashemi Nicole N.,
Montazami Reza
Publication year - 2017
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201600544
Subject(s) - materials science , composite material , ultimate tensile strength , polycaprolactone , composite number , modulus , nanofiber , carbon nanofiber , fiber , conductivity , polymer , carbon nanotube , chemistry
Carbon nanofiber/polycaprolactone (CNF/PCL) composite fibers are fabricated using a microfluidic approach. The fibers are made with different content levels of CNFs and flow rate ratios between the core and sheath fluids. The electrical conductivity and tensile properties of these fibers are then investigated. It is found that at a CNF concentration of 3 wt%, the electrical conductivity of the composite fiber significantly increases to 1.11 S m −1 . The yield strength, Young's modulus, and ultimate strength of the 3 wt% CNF increase relative to the pure PCL by factors of 1.72, 2.88, and 1.23, respectively. Additionally, the results show that a microfluidic approach can be considered as an effective method to align CNFs along the fibers in the longitudinal direction.