z-logo
Premium
Impact Modification and Fracture Mechanisms of Core–Shell Particle Reinforced Thermoplastic Protein
Author(s) -
Smith Matthew J.,
Verbeek Casparus J. R.
Publication year - 2016
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201600043
Subject(s) - materials science , composite material , crazing , ultimate tensile strength , izod impact strength test , brittleness , thermoplastic , fracture (geology) , core (optical fiber) , fracture mechanics , polymer
Mechanical properties and fracture mechanisms of Novatein thermoplastic protein and blends with core–shell particles (CSPs) have been examined. Novatein is brittle with low impact strength and energy‐to‐break. Epoxy‐modified CSPs increase notched and unnotched impact strength, tensile strain‐at‐break, and energy‐to‐break, while tensile strength and modulus decrease as CSP content increases. T g increases slightly with increasing CSP content attributed to physical crosslinking. Changes to mechanical properties are related to the critical matrix ligament thickness and rate of loading. Novatein control samples display brittle fracture characterized by large‐scale crazing. At high CSP content a large plastic zone and a slow crack propagation zone in unnotched and tensile samples are observed suggesting increased energy absorption. Notched impact samples reach critical craze stresses easily regardless of CSP content reducing impact strength. It is concluded that the impact strength of thermoplastic protein can be modified in a similar manner to traditional thermoplastics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom