z-logo
Premium
Effect of Carbon‐Based Particles on the Mechanical Behavior of Isotactic Poly(propylene)s
Author(s) -
Garzon Cristhian,
Wilhelm Manfred,
Abbasi Mahdi,
Palza Humberto
Publication year - 2016
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201500380
Subject(s) - materials science , composite material , graphite , tacticity , carbon nanotube , polymer , graphene , modulus , oxide , dynamic mechanical analysis , graphite oxide , nanotechnology , polymerization , metallurgy
Different carbon‐based fillers such as carbon nanotubes (CNTs), graphite, and thermally reduced graphene oxide (TrGO) are melt mixed with an isotactic poly(propylene) (iPP) and the mechanical properties of the resulting composites in the solid and melt state are analyzed. The Young's modulus of composites is increased around 25% relative to the neat iPP at concentrations above 10 wt% of CNTs or graphite whereas composites with TrGO are increased around 40% at similar concentrations. These results are compared with theoretical models showing that the filler agglomeration and surface area are key parameters. The rheological results of the composites under oscillatory shear conditions at the melt state show that the viscous raw polymer melt experiences a solid‐like transition at a threshold concentration that strongly depends on the filler used. This transition appears at 10 wt% for CNTs, 8 wt% for TrGO, and 40 wt% for graphite. The viscosity of iPP/TrGO composites is further increased by adding CNTs particles, although the Young's modulus does not increase.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here