Premium
Facile Synthesis of p‐type Perovskite SrTi 0.65 Fe 0.35 O 3– δ Nanofibers Prepared by Electrospinning and Their Oxygen‐Sensing Properties
Author(s) -
Choi SeungHoon,
Choi SeonJin,
Min Byoung Koun,
Lee Woon Young,
Park Jin Seong,
Kim IlDoo
Publication year - 2013
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.201200375
Subject(s) - materials science , crystallite , electrospinning , calcination , perovskite (structure) , nanofiber , oxygen , fiber , porosity , analytical chemistry (journal) , crystallography , nanotechnology , composite material , physics , metallurgy , catalysis , polymer , biochemistry , chemistry , chromatography , quantum mechanics
Quaternary p‐type SrTi 0.65 Fe 0.35 O 3– δ (STFO) nanofibers with diameters ranging from 70 to 500 nm were synthesized via electrospinning and subsequent calcination at 750 °C. The STFO fibers showed single perovskite structure and polycrystalline fiber morphologies composed of small nanocrystallites in the range of 10–12 nm. The semiconducting oxygen sensor using STFO fiber network exhibited a wide temperature‐independence of resistance (≈12 ± 4 kΩ) that exceeded the range of 600–950 °C, high oxygen response ( ${{R_{{\rm O}_{{\rm 2}} } } \mathord{\left/ {\vphantom {{R_{{\rm O}_{{\rm 2}} } } {R_{{\rm N}_{{\rm 2}} } }}} \right. \kern-\nulldelimiterspace} {R_{{\rm N}_{{\rm 2}} } }}$ = 4.08 at 20% O 2 ), and a fast response time ( t = 2.1 s at 20% O 2 ) upon cyclic oxygen exposure. These superior properties were attributed to the high surface‐to‐volume ratio of STFO fiber network and the effective diffusion of oxygen gas onto highly porous STFO‐sensing layers.