Premium
Microcellular Foamed Wood‐Plastic Composites by Different Processes: a Review
Author(s) -
Faruk Omar,
Bledzki Andrzej K.,
Matuana Laurent M.
Publication year - 2007
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200600406
Subject(s) - materials science , composite material , compression molding , polymer , extrusion , molding (decorative) , fiber , glass fiber , blowing agent , fibre reinforced plastic , mold , polyurethane
Wood fiber reinforced polymer composites represent a relatively small but rapidly growing material class, extensively applied in interior building applications and in the automotive industry. The polymer‐wood fiber composites utilize fibers as reinforcing filler in the polymer matrix and are known to be advantageous over the neat polymers in terms of the materials cost and mechanical properties such as stiffness and strength. Wood fiber reinforced polymer composites are microcellularly processed to create a new class of materials with unique properties. Most manufacturers are evaluating new alternatives of foamed composites that are lighter and more like wood. Foamed wood composites accept screws and nails like wood, more so than their non‐foamed counterparts. They have other advantages such as better surface definition and sharper contours and corners than non‐foamed profiles, which are created by the internal pressure of foaming. This paper represents a review on microcellular wood fiber reinforced polymer composites obtained by different processes (batch, injection molding, extrusion, and compression molding process) and includes an overview of foaming agents (physical and chemical) and the foaming of wood fiber‐polymer composites (changes in phase morphology, formation of polymer‐gas solution, cell nucleation, and cell growth control).