Premium
Nanoindentation and Morphological Studies of Epoxy Nanocomposites
Author(s) -
Shen Lu,
Wang Lei,
Liu Tianxi,
He Chaobin
Publication year - 2006
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200600184
Subject(s) - materials science , nanoindentation , composite material , nanocomposite , epoxy , fracture toughness , toughness , creep , organoclay , elastic modulus , modulus
Summary: This paper investigates the mechanical properties of the epoxy–organoclay nanocomposites by the nanoindentation technique. The nanocomposites were prepared by in situ polymerization and a mixture of exfoliated and intercalated composites structure was obtained as evidenced by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The hardness, elastic modulus, and the creep behavior of the nanocomposites have been evaluated as a function of clay concentration. It has been found that incorporation of 7.5 wt.‐% of clay nanofiller enhances the elastic modulus and hardness of the epoxy matrix by about 20 and 6%, respectively. The elastic modulus data calculated from indentation experiments are comparable with those obtained from a tensile test. An optimum clay loading level was found to be 2.5 wt.‐% to maximum enhance the creep resistance of the epoxy matrix. The lowered creep resistance with higher clay loading could be due to the reduced crosslinking density near the clay surface caused by the plasticizing effect from the pending of alkyl ammonium chains on the clay surface. An attempt has been made to correlate the fracture toughness of the nanocomposites with the ratio of modulus to hardness obtained from nanoindentation experiments.Ratio of modulus to hardness ( E / H ) and the fracture toughness ( K IC ) versus clay loading for the epoxy nanocomposites.