Premium
Dynamic Monte Carlo Simulation of Atom‐Transfer Radical Polymerization
Author(s) -
AlHarthi Mamdouh,
Soares João B.P.,
Simon Leonardo C.
Publication year - 2006
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200600155
Subject(s) - materials science , polymerization , radical polymerization , atom transfer radical polymerization , dispersity , molar mass distribution , polymer chemistry , polystyrene , living free radical polymerization , chain transfer , bulk polymerization , reversible addition−fragmentation chain transfer polymerization , kinetic chain length , monomer , living polymerization , polymer , composite material
Summary: A dynamic Monte Carlo model was developed to simulate atom‐transfer radical polymerization (ATRP). The algorithm used to describe the polymerization includes activation, deactivation, propagation, chain transfer, and termination by combination and disproportionation reactions. Model probabilities are calculated from polymerization kinetic parameters and reactor conditions. The model was used to predict monomer conversion, average molecular weight, polydispersity and the complete molecular weight distribution at any polymerization time or monomer conversion. The model was validated with experimental results for styrene polymerization and compared with simulation results from a mathematical model that uses population balances and the method of moments. The simulations agree well with experimental and theoretical results reported in the literature. We also investigated the control volume size and number of iterations to reduce computation time while keeping an acceptable noise level in the Monte Carlo results.Comparison of the chain length distribution of polystyrene made with ATRP and conventional free radical (CFR) polymerization at 50% conversion. The initiator to monomer ratios are 1:100 (ATRP left peak), 1:500 (ATRP right peak), and 1:1000 (CFR).