Premium
Nano/Micro Particle Hybrid Composites for Scratch and Abrasion Resistant Polyacrylate Coatings
Author(s) -
Bauer Frank,
Flyunt Roman,
Czihal Konstanze,
Buchmeiser Michael R.,
Langguth Helmut,
Mehnert Reiner
Publication year - 2006
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200600034
Subject(s) - materials science , nanocomposite , composite material , abrasion (mechanical) , acrylate , composite number , nano , nanoparticle , substrate (aquarium) , corundum , coating , hybrid material , chemical engineering , polymer , nanotechnology , copolymer , oceanography , geology , engineering
Summary: UV curable acrylate formulations with a high content of fumed, nano‐sized silica were prepared to improve their application for abrasion and scratch resistant top coats. Grafting of trialkoxysilanes onto the surface of nanoparticles facilitated their embedding in the formulation and alleviated the effect of undesired increase in viscosity and dilatancy. Modified nanoparticles were obtained from several organosilanes and characterized by a multitechnique approach. To avoid problems during redispersion, in situ modification of nano‐sized silica was performed using the liquid acrylate formulation as a diluting and deagglomerating agent. These nanocomposite materials exhibit markedly improved properties as compared to neat acrylate coatings, e.g. heat, scratch, and abrasion resistance. However, a much better abrasion resistance was obtained for coatings containing both silica nanoparticles and corundum microparticles. By using various grades of corundum, a synergetic effect of nano/micro hybrid composite materials has been studied for parquet and flooring applications.Pictures of neat polyacrylate coating (on the left) and nano/micro hybrid composite material (18 wt.‐% silica +15 wt.‐% corundum) on parquet substrate after Taber Abraser Test.