Premium
Synthesis and Photopolymerizations of New Crosslinkers for Dental Applications
Author(s) -
Yagci Baris,
Ayfer Burcu,
Albayrak Aylin Z.,
Avci Duygu
Publication year - 2006
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200500391
Subject(s) - monomer , photoinitiator , polymerization , polymer chemistry , photopolymer , materials science , amide , bisphenol a , hydrolysis , polymer , organic chemistry , chemistry , composite material , epoxy
Summary: Five new crosslinkers for use in dental composites were synthesized. Four are based on TBHMA: 1 via reaction of TBBr and Bisphenol A; 2 by hydrolysis of t ‐butyl groups of the first monomer to give a diacid derivative; 3 by conversion of the first monomer to an amide derivative using benzyl amine; 4 by conversion of the first monomer to amide derivative using APTES. The AHM‐based monomer 5 was synthesized from the Michael addition of APTES to AHM. The photopolymerization behaviors of the synthesized monomers with Bis‐GMA, TEGDMA and HEMA were investigated using photodifferential scanning calorimetry at 40 °C using DMPA as photoinitiator. The polymerization rates and degrees of conversion for mixtures of any of the monomers 1 – 4 with Bis‐GMA:TEGDMA were found to be similar to Bis‐GMA:TEGDMA, higher than Bis‐GMA:HEMA, and also higher than mixtures with Bis‐GMA:HEMA. The incorporation of TBHMA‐based monomers into the conventional resin mixture (Bis‐GMA and TEGDMA) reduced the polymerization shrinkages. Monomer 5 and its mixtures polymerized much faster and to higher degrees of conversion than the other investigated systems, however, this system exhibited the largest volume shrinkage.Structures of some of the new crosslinkers synthesized.