Premium
Limitation of the Coalescence of Evolutive Droplets by the Use of Copolymers in a Thermoplastic/Thermoset Blend
Author(s) -
Meynie Laure,
Habrard Alexia,
Fenouillot Françoise,
Pascault JeanPierre
Publication year - 2005
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200500192
Subject(s) - copolymer , materials science , epoxy , thermosetting polymer , styrene , polymerization , polymer chemistry , polystyrene , thermoplastic , composite material , chemical engineering , polymer , engineering
Summary: Polystyrene (PS)/epoxy‐amine (DGEBA‐MDEA) is a thermoplastic/thermoset precursor blend which is miscible at high temperature (177 °C), and which phase separates under the polymerization of the epoxy‐amine system. Previous studies have shown that the morphology of this blend polymerized under shear is coarse and irregular because the dispersed epoxy‐amine domains coalesce before they gel. Several styrene‐methyl methacrylate and a styrene‐butadiene‐styrene block copolymers have been added to the PS/DGEBA‐MDEA 60/40 blend in order to limit the coalescence and thus obtain a finer morphology. Two of the copolymers used were reactive either with the epoxy or with the amine. It was shown that the addition of 15 wt.‐% of non reactive copolymer had a positive but limited effect on the size of the final epoxy‐amine particles. The copolymer remained at the interface at the early stages of the polymerization. However, it was pulled out by the shear forces around the gel point of the epoxy domains. Most of the non reactive copolymer was present in the shape of micelles at the end of the process. On the other hand, the reactive copolymers were able to establish covalent bonds with the epoxy‐amine drops and hence were not extracted at all. Consequently they allowed the decrease the size of the particles by a factor of 15. Despite this, the observation of the morphology at different stages of the polymerization has revealed that the copolymer moved at the interface of the epoxy domains during the collision of two droplets. The movements of fluids into the epoxy domains pushed the copolymer out of the inter‐droplet zone so that it could not prevent the drainage of the liquid film between the droplets and consequently their coalescence.TEM showing that the layer of copolymer (in dark grey) has moved along the interface of epoxy‐amine drops during their successful collision in a polystyrene‐rich matrix.