z-logo
Premium
Ternary Blends to Improve Heat Distortion Temperature and Rheological Properties of PVC
Author(s) -
de Zarraga Arantxa,
Villanueva Sara,
Muñoz Maria Eugenia,
Obeso Rafael,
Peña Juan José,
Pascual Belén,
Santamaría Anton
Publication year - 2004
Publication title -
macromolecular materials and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 96
eISSN - 1439-2054
pISSN - 1438-7492
DOI - 10.1002/mame.200400029
Subject(s) - materials science , ternary operation , dynamic mechanical analysis , composite material , copolymer , vinyl acetate , glass transition , rheology , extrusion , ethylene vinyl acetate , polymer blend , polymer , computer science , programming language
Summary: Binary and ternary blends of PVC mixed with α ‐methylstyrene/acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) and ethylene/vinyl acetate/carbon monoxide terpolymer (EVA‐CO) are investigated, with the aim to obtain a new PVC based material with an improved heat distortion temperature and good processability. Dynamic Mechanical Thermal Analysis (DMTA) reveals that ternary PVC/AMS‐ABS/EVA‐CO blends exhibit two glass transition temperatures: the lower T g corresponds to a PVC/EVA‐CO phase and the higher one to a PVC/AMS‐ABS phase. An analysis of PVC respective interactions with AMS‐ABS and EVA‐CO leads to assert that the distribution of PVC in the ternary PVC/AMS‐ABS/EVA‐CO system is basically controlled by the binary immiscible blend composition, taken as Φ AMS‐ABS/Φ EVA‐CO ratio. The inclusion of AMS‐ABS and EVA‐CO to form ternary blends based on PVC, allows to improve heat distortion temperature (owed to the presence of AMS‐ABS), maintaining a low viscosity in the molten state, due to the plasticizing effect of EVA‐CO.Viscosity function obtained at T  = 170 °C from extrusion capillary measurements.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom