z-logo
Premium
Product cones in dense pairs
Author(s) -
Eleftheriou Pantelis E.
Publication year - 2022
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.202100028
Subject(s) - mathematics , cone (formal languages) , product (mathematics) , set (abstract data type) , decomposition , pure mathematics , field (mathematics) , combinatorics , geometry , algorithm , computer science , ecology , biology , programming language
LetM = ⟨ M , < , + , ⋯ ⟩ $\mathcal {M}=\langle M, <, +, \dots \rangle$ be an o‐minimal expansion of an ordered group, andP ⊆ M $P\subseteq M$ a dense set such that certain tameness conditions hold. We introduce the notion of a product cone inM ∼ = ⟨ M , P ⟩ $\widetilde{\mathcal {M}}=\langle \mathcal {M}, P\rangle$ , and prove: if M $\mathcal {M}$ expands a real closed field, thenM ∼ $\widetilde{\mathcal {M}}$ admits a product cone decomposition. If M $\mathcal {M}$ is linear, then it does not. In particular, we settle a question from [10].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom