Premium
Existential definability of modal frame classes
Author(s) -
Perkov Tin,
Mikec Luka
Publication year - 2020
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201900061
Subject(s) - mathematics , algebraic semantics , modal , closure (psychology) , algebraic number , pure mathematics , completeness (order theory) , class (philosophy) , model theory , existentialism , kripke semantics , algebra over a field , discrete mathematics , modal logic , computer science , mathematical analysis , philosophy , chemistry , epistemology , polymer chemistry , artificial intelligence , economics , market economy
We prove an existential analogue of the Goldblatt‐Thomason Theorem which characterizes modal definability of elementary classes of Kripke frames using closure under model theoretic constructions. The less known version of the Goldblatt‐Thomason Theorem gives general conditions, without the assumption of first‐order definability, but uses non‐standard constructions and algebraic semantics. We present a non‐algebraic proof of this result and we prove an analogous characterization for an alternative notion of modal definability, in which a class is defined by formulas which are satisfiable under any valuation (the so‐called existential validity). Continuing previous work in which model theoretic characterization for this type of definability of elementary classes was proved, we give an analogous general result without the assumption of the first‐order definability. Furthermore, we outline relationships between sets of existentially valid formulas corresponding to several well‐known modal logics.