z-logo
Premium
Cohen forcing and inner models
Author(s) -
Reitz Jonas
Publication year - 2020
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201800062
Subject(s) - forcing (mathematics) , partially ordered set , cardinality (data modeling) , mathematics , combinatorics , discrete mathematics , pure mathematics , computer science , mathematical analysis , data mining
Given an inner model W ⊂ V and a regular cardinal κ, we consider two alternatives for adding a subset to κ by forcing: the Cohen poset Add(κ, 1), and the Cohen poset of the inner model Add ( κ , 1 ) W . The forcing from W will be at least as strong as the forcing from V (in the sense that forcing with the former adds a generic for the latter) if and only if the two posets have the same cardinality. On the other hand, a sufficient condition is established for the poset from V to fail to be as strong as that from W . The results are generalized to Add ( κ , λ ) , and to iterations of Cohen forcing where the poset at each stage comes from an arbitrary intermediate inner model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here