Premium
Algebraic numbers with elements of small height
Author(s) -
Göral Haydar
Publication year - 2019
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201700043
Subject(s) - mathematics , conjecture , algebraic extension , algebraic number , simple (philosophy) , discrete mathematics , combinatorics , pure mathematics , mathematical analysis , differential algebraic equation , ordinary differential equation , philosophy , epistemology , differential equation
In this paper, we study the field of algebraic numbers with a set of elements of small height treated as a predicate. We prove that such structures are not simple and have the independence property. A real algebraic integer α > 1 is called a Salem number if α and 1 / α are Galois conjugate and all other Galois conjugates of α lie on the unit circle. It is not known whether 1 is a limit point of Salem numbers. We relate the simplicity of a certain pair with Lehmer's conjecture and obtain a model‐theoretic characterization of Lehmer's conjecture for Salem numbers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom