z-logo
Premium
Remarks on gaps in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathrm{Dense}(\mathbb {Q})/\mathbf {nwd}}$\end{document}
Author(s) -
Kankaanpää Teppo
Publication year - 2013
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201110047
Subject(s) - physics , combinatorics , omega , mathematics , quantum mechanics
The structure \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathrm{Dense}(\mathbb {Q})/\mathbf {nwd}$\end{document} and gaps in analytic quotients of \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\mathscr {P}(\omega )$\end{document} have been studied in the literature 2, 3, 1. We prove that the structures \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\mathrm{Dense}(\mathbb {Q})/\mathbf {nwd}$\end{document} and \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\mathscr {P}(\mathbb {Q})/\mathbf {nwd}$\end{document} have gaps of type \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$(\mathrm{add}(\mathscr {M}), \omega )$\end{document} , and there are no (λ, ω)‐gaps for \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\lambda < \mathrm{add}(\mathscr {M})$\end{document} , where \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\mathrm{add}(\mathscr {M})$\end{document} is the additivity number of the meager ideal. We also prove the existence of (ω 1 , ω 1 )‐gaps in these structures. Finally we characterize the cofinality of the meager ideal \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\mathrm{cof}(\mathscr {M})$\end{document} using families of sets in \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}$\mathrm{Dense}(\mathbb {Q})/\mathbf {nwd}$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom