z-logo
Premium
A p‐adic probability logic
Author(s) -
IlićStepić Angelina,
Ognjanović Zoran,
Ikodinović Nebojša,
Perović Aleksandar
Publication year - 2012
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201110006
Subject(s) - combinatorics , mathematics , physics , mathematical physics
In this article we present a p ‐adic valued probabilistic logic \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} which is a complete and decidable extension of classical propositional logic. The key feature of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} lies in ability to formally express boundaries of probability values of classical formulas in the field \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} of p ‐adic numbers via classical connectives and modal‐like operators of the form K r , ρ . Namely, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} is designed in such a way that the elementary probability sentences K r , ρ α actually do have their intended meaning—the probability of propositional formula α is in the \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} ‐ball with the center r and the radius ρ. Due to modal nature of the operators K r , ρ , it was natural to use the probability Kripke like models as \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} ‐structures, provided that probability functions range over \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} instead of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}$\end{document} or \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$^*\mathbb {R}$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom