z-logo
Premium
Imaginaries in Boolean algebras
Author(s) -
Wencel Roman
Publication year - 2012
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201020082
Subject(s) - mathematics , combinatorics , equivalence relation , equivalence (formal languages) , algebra over a field , pure mathematics
Given an infinite Boolean algebra B , we find a natural class of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\varnothing$\end{document} ‐definable equivalence relations \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}_{B}$\end{document} such that every imaginary element from B eq is interdefinable with an element from a sort determined by some equivalence relation from \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}_{B}$\end{document} . It follows that B together with the family of sorts determined by \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}_{B}$\end{document} admits elimination of imaginaries in a suitable multisorted language. The paper generalizes author's earlier results concerning definable equivalence relations and weak elimination of imaginaries for Boolean algebras, obtained in 10.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here