z-logo
Premium
Forcing with the Anti‐Foundation axiom
Author(s) -
Esser Olivier
Publication year - 2012
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201020079
Subject(s) - forcing (mathematics) , mathematics , axiom , constructive set theory , foundation (evidence) , axiom of choice , zermelo–fraenkel set theory , urelement , context (archaeology) , calculus (dental) , relation (database) , axiom independence , mathematical economics , pure mathematics , set theory , mathematical analysis , computer science , geometry , geology , data mining , law , set (abstract data type) , political science , medicine , dentistry , programming language , paleontology
In this paper we define the forcing relation and prove its basic properties in the context of the theory ZFCA, i.e., ZFC minus the Foundation axiom and plus the Anti‐Foundation axiom (AFA).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here