z-logo
Premium
Non‐saturation of the non‐stationary ideal on P κ (λ) with λ of countable cofinality
Author(s) -
Matet Pierre
Publication year - 2012
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201020055
Subject(s) - cofinality , uncountable set , mathematics , lambda , ideal (ethics) , combinatorics , countable set , saturation (graph theory) , omega , physics , philosophy , epistemology , quantum mechanics , optics
Given a regular uncountable cardinal κ and a cardinal λ > κ of cofinality ω, we show that the restriction of the non‐stationary ideal on P κ (λ) to the set of all a with \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathrm{cf}(\sup (a\cap \kappa)) = \omega$\end{document} is not λ ++ ‐saturated (and even not \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$2^{{(\lambda ^{<\kappa }})}$\end{document} ‐saturated in case 2 λ = λ + ). We actually prove the stronger result that there is \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$Q\subseteq \mathrm{NG}_{\kappa ,\lambda }^+$\end{document} with | Q | = λ ++ such that A ∩ B is a non‐cofinal subset of P κ (λ) for any two distinct members A , B of Q , where NG κ, λ denotes the game ideal on P κ (λ). We also remark that for κ > ω 1 , adding λ +3 Cohen subsets of ω 1 to \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbf {L}$\end{document} makes NG κ, λ λ +3 ‐saturated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom